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The use of soft computing techniques in coherent communi-

cations phase synchronization provides an alternative to an-

alytical or hard computing methods. This paper discusses

a novel use of Adaptive Neuro-Fuzzy Inference Systems

(ANFIS) for phase synchronization in coherent communi-

cations systems utilizing Multiple Phase Shift Keying (M-

PSK) modulation. A brief overview of the M-PSK digi-

tal communications bandpass modulation technique is pre-

sented and it's requisite need for phase synchronization is

discussed. We briefly describe the hybrid platform devel-

oped by Jang [6] that incorporates fuzzy/neural structures

namely the, Adaptive Neuro-Fuzzy Interference Systems

(ANFIS). We then discuss application of ANTIS to phase

estimation for M-PSK. The modeling of both explicit, and

implicit phase estimation schemes for M-PSK symbols
with unknown structure are discussed. Performance results

from simulation of the above scheme is presented.

1. INTRODUCTION

The functional block diagram shown in Figure 1 illus-

trates the signal flow through a simplified digital commu-

nications system. The upper blocks-format and modulate

indicate the signal transformations from the source to the

transmitter. The lower blocks indicate the signal transtbr-
mations from the receiver to the sink; the lower blocks es-
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sentially reverse the signal processing steps performed by

the upper blocks. The channel in our work is a source of

complex additive white Gaussian (AWGN) noise.
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Figure 1. Simplified digital communications

system

In the case of coherent phase modulation also know as

Phase Shift Keying (PSK), the receiver is assumed to be

able to generate a set of reference signals whose phases are

identical to the phases of the signaling alphabet in use at

the transmitter. These reference signals are compared to the

incoming signals in the process of making maximum likeli-
hood symbol decisions. In order to be able to generate these

reference signals, the receiver has to be in synchronization
with the received carrier. This means that there has to be

phase concurrence betxveen the incoming carrier sinusoid

and a replica of it in the receiver. In other words, if there

were no information modulated on the incoming carrier, the

incoming sinusoid and the replica in the receiver would pass

through zero simultaneously. This is what is known as be-

ing in phase lock and it is a condition that must be ch)sely

approximated if coherently modulated signals are to be ac-
curately demodulated at the receiver. It is in this context

that we use the terms synchroni=ation and e.stimati(m some-

what intcrchangeably. We further illustrate these c_)ncepts
in the remainder of this section before moving _m to our



no_elapplicationofsoftcomputingtosynchronization.
Figure[ indicatesthatfromthesourceto themodula-

toramessage such as the ASCII character "E", is converted

in the forntat block to a baseband signal or bit stream. This

bit stream is characterized by a sequence of digital symbols.

These digital symbols are uniformly space pulses represent-

ing the message. After modulation, the message takes the

form of of a digitally encoded waveform or digital wave-
for/It.

We focus on PSK modulation in this work. PSK modu-

lation is now widely used in both military and commercial

communications systems. The general analytic expression
for PSK is

z_i(t) = cos[_ot + O,(t)] 0 < t < T (1)

where the phase term (baseband signaling alphabet), Oi (t),
will have M discrete values, typically given by

27ri
0i(t) = -- i= 1,...,_:/

M

The bandpass signaling alphabet (simply the phasors gen-

erated by the PSK modulator) are then

ai = eJ°*(t) i = l,...,M

For the binary PSK (BPSK) example in Figure 2, M is 2.

The parameter E is the symbol energy, T is the symbol time
duration, and 0 < t < T. In BPSK modulation, the modu-

lating data shifts the phase of the waveform, x, I (t), to one
of two states, either zero or rr (180°). The concepts of infor-

mation, baseband representation, baseband signaling alpha-

bet, bandpass signaling alphabet and bandpass digital wave-

forms are illustrated in Figure 2 which shows the ASCII bi-

nary representation of the letter "E" and the resulting BPSK

waveform. We note the rapid phase changes at the sym-
bol transitions. We see that the information is carried in the

phase of the sinusoidal carder wave. For M--4 or quadrature

phase shift keying (QPSK) the modulator maps 2 basebaqd

bits of the bit stream to one or" ;.1.possible phases (phasors).

The demodulator in Figure 1 has the task making the best

estimate di of the transmitted bandpass signaling alphabet

ai. The optimum receiver in this case is know as a cor-

relation receiver [18]. The demodulation process requires

multiplying the received waveform x,l(t ) by a reference

waveforms ri(t) which have frequency and phase identi-
cal to that of the unmoduIated sinusoid used to transmit the

waveform (set M=I and i=! in (1)) and sampling a matched
filter at the optimum sample time T. Figure 3 illustrates the

correlation receiver where we have separated the functions

of frequency, phase and symbol timing synchronization and

we use complex signal notation

,_J" = co._(_) + j ._in(_) (2)

Ol _ --
,_r--T_T _ T _ T _--_ r _--_ T _._ T---_,-

(a) Bit stream (7-bit ASCII) "E"

0 IT 0 Ti- mr -IT O

(b) Baseband signaling alphabet

e(JO) e_l Tn e(iO) ell -rn ed _ eu _ eiJO!

(c) Bandpass signaling alphabet

voltaQe

UUUUJUUUUUUUUUUUJUU

(d) Bandpass digital waveforms x,(t), i=1,2

Figure 2. Bit stream and corresponding digital

waveform for Binary-PSK (BPSK)

which allows for easier generalization to M>2 and makes

for a more compact mathematical notation.
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Figure 3. Coherent communications receiver

Recapping, synchronization (estimation) is a critical
function in any modern coherent digital communication._

system. In synchronous digital transmissions the infor-

mation is conveyed by uniformly spaced pulses, and the

received signal is completely known except for the data
symbols and a group of variables referred to as reference

parameters. Reference parameters in this context include

._'. o. and'r the carrier angular frequency, carrier phase

and symbol timing, respectively. Though it is the ultimate

task of the receiver to generate an accurate replica of the

symbol sequence with no regard to the reference parame-



ters,thisisonlypossiblebyexploitingknowledgeof these
parameters.Coherentdemodulationisusedwithpassband
digitalcommunications.In coherentcommunicationsthe
basebanddatasignalisderivedmakinguseof a localref-
erencewiththesamefrequencyandphaseastheincoming
carrier.Carrieror phase synchronization is the function of

aligning the phase and frequency of the receiver oscillator
with that of the transmitter oscillator when the information

is modulated onto the carrier.

The coherent receiver structure that forms the basis for

our work is shown in Figure 4. We make the assumption that

the frequency and symbol timing are know exactly. This as-

sumption is valid because generally these reference param-

eters can be estimated independently of each other. Refer-

ring to Figure 4, for carrier phase estimation we represent

the received signal by the sufficient statistic, namely,

x(k) = ake j* + nk (3)

Here, ak is the possibly complex valued bandpass signaling
alphabet symbol ak E {ej_ :' i E {0,1,... ,M}} , g5

is the unknown carrier phase, and nk is complex additive

white Gaussian noise (AWGN). It is shown by Van Trees

in [18] that {x(k)} forms a set of sufficient statistics for

estimating the phase ¢. In simple terms a sufficient statistic

indicates that no other information about the signal is need

to obtain the "best" estimate of the parameter(s).

Figure 4. Coherent receiver structure

Historically the approaches to synchronization structure

can be divided into two categories, which we denote as

ad-hoc structures and derived or analytical structures. Ar-

guably, the most commonly used analytical method for

phase estimation is that of maximum likelihood (ML). The

ML estimator has several important theoretical advantages

which make it very desirable to obtain. These include its'

being the best w.r.t the chosen criterion, the that it has the

po;sibiliry of achieving the lower bound on performance
know as the Cramer-Rao lower bound or CRB. An estima-

tor that achieves the CRB is known as an efficient estimator

and if an estimator is efficient it is a NIL estimator. The ML

estimate is given by the likelihood equation

argo max p(x t0) (4)

or by the equivalent expression

0 In p_i,(Xlo) }O0 o=&,,,,, = 0 (5J

Where p(xic) ) the probability density function of the re-

ceived vector x, _iven o. The ML estimate o can be thought
of as the phase 0 that most likely gave rise to the received

signal x.

Unfortunately, in most practical cases where digital

modulation is present, derived structure criterion leads to

highly non-linear systems, which in general cannot be

solved for the optimum solution and only implicit solutions

are arrived at. To find explicit solutions approximations

must be made, which leads to results that are valid only for

ranges of the parameters and are in essence sub-optimal to
the true ML estimate.

Equation (6) gives the exact ML estimator of carrier
phase for M-PSK modulation obtained in terms of the re-

ceived signal over the immediate past N symbols. As

pointed out by Kam [7] the ML phase estimator is nonim-

plementable. Implementable approximations by which ¢_

can be obtained have been made [7, 16, 12]. An important

and fair question is: "Do better estimation procedures than
ML exist?" The answer is that if an efficient estimate 0 does

not exist then it is certainly possible. The difficulty is that
no procedure exists for finding such an estimator other than

trial and error. The highly nonlinear result for the exact ML

estimate of _ provides the necessary motivation to examine

the application of soft computing methods as an alternative
for phase estimator design. SC offers a model free approach

to estimator design and provides a viable alternative estima-

tor desh:,n tool.

k-I

5(k) Z
l=k -,'V

k-t

= ,;(k)
l=k--N

_L=t e-_'c sinh qL(l, O(k))"2[x(l)a'_.]
tl

_7._.=1 e-sL coshqL(l. ('_(k))

(6)

_L=Ie->L sinllqL(l, _'" "" .1o(k))Ria-(1)ar_

tl -:"_"coshqL(l.o(k))

(7)

[l * 0 "Where coL = .% ,qLt ,0) = _ R(x(l)a" re -J°), and c a
constant independent of o. N is the Mock size in symbols.

2. Soft Computing and Estimation

"As the complexity of a system increases, c_ur
ability to make precise and yet signiticant

statements about its behavior diminishes until a



thresholdisreachedbeyondwhichprecisionand
significance(orrelevanceJbecomealmost
mutuallyexclusivecharacteristics."

LotfiZadeh
Professor,SystemsEngineering,1973

Zadeh's"PrincipleofIncompatibility",quotedabove[22],
accuratelydescribesthethesituationweencounterwit'laML
estimationof thephasein M-PSK.Thuswelookfor al-
ternativeestimationalgorithmdesignmethodologies.Soft
computingisonesuchalternative.SCtechniquesenable
constructionofestimationmodelsusingonlytargetsystem
samplesorstatedanotherway,SCoffersamodel-freede-
signapproach.

Ouraimhereisnottonecessarilyderiveacarrierphase
recoveryschemeforM-PSKthatoffersimprovementsin
performanceorsimplificationin implementationcompared
toexistingmethods,althoughthesegoalarebelievedattain-
able.Rather,themaincontributionliesindevelopingnew
model-freetoolsfor thedesignof estimationschemesand
greaterinsightsintocarrierphaseestimation[3].

Manyproblemsinestimationandidentificationcanbe
formulatedasfunction-approximationproblems[9].Forin-
stance,inconventionalsystemidentification,input-output
dataisgatheredfromaphysicalsystemandaleast-squares
approachcanbeusedtoprovidethebestapproximationfor
thelinearfunctionthatmapsthesysteminputstoitsoutputs.
In a similarfashion,inparameterestimationif thegiven
dataissuchthatit associatesmeasurablesystemvariables
withaninternalsystemparameter,a functionalmapping
maybeconstructedthatapproximatestheprocessof esti-
mationof theinternalsystemparameter.A systemwhich
exhibitsuniversal approximation is capable of approximat-

ing any real continuous function on a compact set to any de-

gree of accuracy. Certain classes of fuzzy systems have the

property of universal approximation [14, 9]. The proof of

fuzzy systems as universal appro,vimations was first given

in [20].

We briefly describe Jang's [6] hybrid platform that in-

corporates fuzzy/neural structui'es namely the, Adaptive

Neuro-Fuzzy Interference Systems (ANFIS). We then dis-

cuss application of ANFIS to phase estimation for M-PSK.

We first discuss application of ANFIS to the general case

of explicit (open-loop) phase estimation for blocks of N,

M-PSK symbols. We find that this most general estimation

scheme is difficult to implement in practice.

We then engage ANFIS in identification of a novel im-
plicit (closed-loop or error tracking) estimator of phase for

continuous transmission or large blocks of M-PSK modula-
tion using no a-priori knowledge of the signal or estimator

structure. We discuss the results and performance of this
new estimation scheme.

3. An Brief Review of Neuro-Fuzzy Integra-

tion: ANFIS

In this section we provide a brief description of Jang's

[6] hybrid platform that incorporates fuzzy/neural struc-

tures namely the, Adaptive Network Fuzzy Inference Sys-

tem (ANFIS). We limit the review of ANFIS to that required

to discuss the material presented within this paper. ANFIS

is a universal approximator and as such is capable of ap-

proximating any real continuous function on a compact set

to any degree of accuracy [6]. Thus in parameter estima-

tion where the given data is such that it associates measur-

able system variables with an internal system parameter, a

functional mapping may be constructed by ANFIS that ap-

proximates the process of estimation of the internal system

parameter.

ANFIS refers to a class of adaptive network-based fuzzy

inference systems which are functionally equivalent to

fuzzy inference systems [6]. Specifically the ANFIS sys-

tem of interest here is functionally equivalent to the Sugeno

first-order fuzzy model. We briefly review Jang's [6] Hybrid

Learning Algorithm, which combines gradient descent and

the least-squares method, and discuss how the equivalent

fuzzy inference system can be rapidly trained and adapted

with this algorithm.

As a simple example we assume a fuzzy inference sys-

tem with two inputs z and y and one output z. The first-

order Sugeno fuzzy model with two fuzzy If-Then rules is

the following:

Rule 1: Ifx isA_ and 9 is B1, Then fl = plx + q19 + rl,

Rule 2: Ifz is.42 and 9 is B2, Then f2 = p2x + q"-9 + r.,,

The resulting Sugeno fuzzy reasoning system is shown in

Figure 5(a). Here the output z is the weighted average of

the individual rules outputs and is itself a crisp value. The

corresponding equivalent ANFIS architecture is shown in

Figure 5(b). Nodes at the same layer have similar functions.

We describe the node functions next. The output of the ith

node in layer I is denoted as Oz,i.

Layer 1 Every node i in this layer is an adaptive node
Parameters in this layer are referred to as premise param-
eters.

Layer 2 Every node in this layer is a fixed node labeled

1--[, whose output is the product of all the incoming sig-

nals. Here each node represents the firing strength of a rule.

Other T-norm operators that perform the fuzzy AND can be

used as the node function at this layer.

Layer 3 All nodes in this layer are fixed nodes labeled

N. The outputs of this layer are called normalized firing
strengths.

Layer 4 All nodes i in this layer are adaptive nodes The

parameters of this mode are called consequent parame-
ters.



/\ . •............

x y

im or

Pmau,:t

wl

f_ _ _)a x _qaY'ra

wa _ Wolgh_ed

_j Ave_ago

w, ° w z

(a) Two-input first-order Sugeno fuzzy model with two
rules.
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(b) Equivalent ANFIS architecture.

equivalent fuzzy inference system. For hybrid learning ap-

plied in batch mode (off-line learning), each epoch is com-

posed of a forward pass and a backward pass as summa-

rized in Table 3.

Table 1. Hybrid learning procedure for ANFIS

[I 11 ForwardPas i B.  k,v dP ssII
Premise parameters Fixed t Gradient descent

Consequent parameters Least-squares est. Fixed

Signals Node outputs Error s_gnals

In the forward pass of the hybrid learning algorithm,

node outputs go forward until the final layer (layer 4 in Fig-

ure 5(b)) and the consequent parameters are identified by

the least-squares method. In the backward pass, the error

signals propagate backward and the premise parameters are

updated by gradient descent.

4. General Structure Identification for ANFIS

Figure 5. Sugeno and equivalent ANFIS archi-

tecture.

Layer 5 This node is a fixed node labeled _, that com-

putes the overall output as the summation of all incoming

signals.

Through the definitions of layers 1-5 of the ANFIS struc-

ture we have an adaptive network-based fuzzy inference

system which is functionally equivalent to Sugeno first-

order fuzzy inference systems.

As an adaptive system the outputs of the adaptive nodes

depend on the modifiable parameters of the adaptive nodes.

The learning rule specifies how these parameters should be

updated to minimize a prescribed error measure E. The el'-

rot measure is a mathematical expression that measures the

difference between the networks actual output and the de-

sired output, such as the squared error. The basic learning

rule of the adaptive network is the steepest descent method.

In this method the gradient vector is derived by repeated

application of the chain rule. Having obtained the gradi-

ent, if we use it in a steepest descent method, the resulting

learning algorithm is called the backpropagation learning

rule[2, 2[, 15, 17, 61.

While the backpropagation learning rule can be used to

identify the parameters in an adaptive network, this method

is slow to converge. The Hybrid Learning Algorithm

[6], which combines backpropagation and the least-squares

method (LSE) can be used to rapidly trained and adapt the

We introduced Jang's [6] ANFIS architecture along with

its rules for learning in the previous section. The rules for

learning only deal with parameter identification. Methods

for structure identification to determine an initial ANFIS

architecture are required before parameters can be tuned us-

ing the rules for learning. This process is equally important

to the successful application of ANFIS.

Structure identification involves the following issues:

• Selection of relevant input variables

• Initial ANFIS architecture

1. Input space partitioning

2. Number and type of MFs for each input

3. Number of fuzzy if-then rules

4. Premise and consequence parts of rules

• Select initial *IF parameters

In a conventional fuzzy inference system, the number of

rules is determined by an expert who is familiar with the

target system to be modeled. If one has insight into the

system at hand and the system is not too complicated then

structure identification can easily be done by a human ex-

pert. This is typically the Mamdani method of developing

fuzzy If-Then rules. The result is a Fuzzy Associative Mem-

ory ,rF.4.M _ that provides the knowledge base fl)r the system.

With more complex systems t_r those >,here expert rules are

not readily available other means are needed to identify the

initial ANFIS structure. In such cases where no expert zs



available, the number of MFs assigned to each input vari-

able is often chosen by visually inspecting the data sets or

simply by trail and error. This situation is also common to

neural networks where there is no simple way to determine

in advance the minimal number of hidden units required to

achieve a desired performance level [6]. In our applications

we use simple grid partitioning. In grid partitioning the

number of MFs on each input variable uniquely determines

the number of rules 2 The initial values of the premise pa-

rameters are set such that the centers of the MFs are equally

spaced along the range of of each input variable.

Efficient partitioning of the input space can decrease

the number of rules and thus increase the speed of learn-

ing and adaptation. There are several techniques that have

been used successfully in neural network structure identi-
fication [i0]. One of the most effective structure identifi-

cation methods for ANFIS is a binary tree partition scheme

based on the CART (classification and regression tree) algo-

rithm [ 1]. The CART algorithm was first applied to struc-

ture determination in fuzzy mode!ing by Jang in [5]. In the
CART tree partition, each region can be uniquely specified

along a binary decision tree. Tree partitioning eliminates
the problem of exponential growth in rules that we see with

grid partitioning. But often more MFs are needed per input

to define the fuzzy regions, and these MFs do not generally

bear clear linguistic meanings.

5. Explicit (open-loop) ANFIS Phase Estima-
tion

Referring to Figure 4 and (3) we see that the observed

(received) signal consists of signal plus noise. The signal

is composed of transmitted bandpass alphabet symbols ak

that are multiplied (phase rotated) by an unknown phasor,
e j°, which represents the unknown phase offset between the

receiver carrier and transmitter carrier sinusoid. The noise

n_ is previously defined, complex AWGN. The unknown
phase 0 is treated as constant over the duration of observa-

tion of N observations. That ig, all received signals have tlae

same, unknown phase offset 0, which we must estimate.

The ideal ANFIS M-PSK explicit phase estimation

scheme would be such that a functional mapping may be

constructed that approximates the process of estimation of

the internal system parameter. We illustrate this "idealized"

system in Figure 6.

We would like to employ ANFIS to develop a model for
an explicit (open-loop) estimator of phase using no a-priori

knowledge of the signal and limited intuition from experts,

training the system with the observed (received) signal and

the target signal. The observed signal is as described at the

"There will be (_3.1 Fs)_ #_,_t_,,t._ rules, this relationship is know as

the "'Curse of Dimensmnality."

Target Operate mode

Training mode _1'

: ANFIS

xN f(xl....xN)

Figure 6. Ideal explicit ANFIS estimation

start of this section i.e. composed of transmitted bandpass

alphabet symbols ak that are multiplied (phase rotated) by

an unknown phasor, ej° plus complex AWGN. Each packet

or block is composed of N such observed signals. The tar-
get signal is the phasor, e je, which is constant over all N
observations.

Due the the curse of dimensionali_ previously de-

scribed, such an ideal ANFIS structure is not readily im-

plementable. With improved structure or system identifica-

tion methods such as CART (Classification and Regression

Trees) [i] the ideal system may become a reality in the fu-

ture. That is it may be possible to estimate the phase ac-

curately if all N symbols could be presented to the ANFIS

in parallel, an "adequate" number of MFs could be used on

each input and the ANFIS trained. But at present the explo-

sion of rules severely limits the number of inputs if many

MFs are required.

6. Implicit (closed-loop) ANFIS Phase Detector

In this section we employ ANFIS in identification of a

novel, implementable, implicit (closed-loop or error track-

ing) estimator of phase for continuous transmission or large

blocks of M-PSK modulation using no a-priori knowledge

of the signal or estimator structure. We discuss the model.

results and performance of this new estimation scheme.

A phase error tracking system (Figure 7) is characterized

by the following principles of operation. A phase error sig-

nal as a function of the phase alignment error is computed in
a functional block called a phase error detector. This error

signal is then used in a feedback loop to adjust the volt-

age controlled oscillator (VCO). If properly designed, the
feedback circuit forces the error signal to zero. The VCO

is then aligned with the received signal and may serve as

the reference phase in the receiver. For unmodulated carrier

(CW) the phase error detector simply becomes a multiplier

[4]. For modulated signals the structure of the phase error

detector is much more complex. Many different phase er-

ror detectors have been proposed. They include the M-PSK

Costas loop [4], generalized Costas loop [121, the tanlock

loop [111, the Mth power loop [161 and the approximate
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Figure 7. Basic phase _.rror tracking system

ML loop [12, 81.

We apply ANFIS to identii z a phase error detector for
u_'.e with M-PSK and examine t, performance in compari-

son to the the commonly used d ;,4sion directed (DD), mod-

ified M-PSK Costas loop [12] t _ igh SNR Approximate ML

loop [8]).

Assuming no knowledge oi he information symbols,

the ANFIS phase estimator impi ;,nentation is not decision-
directed in nature. That is the _ t marion scheme does not

not or utilize estimates of the : _smitted symbols. In a

fashion similar to that of the pre _ ,us section, in this chap-

ter we employ ANFIS to develo: model for a closed-loop

estimator of phase of M-PSK mt !ation.

Recall from (3) the received , hal or observations are

c_Jmplex valued. Attempts to mc , , the phase detector us-

ing both magnitude and phase t- both the in-phase and

quadrature components of the obs_ r .ed signal are problem-
atic. With either of these appro_ :aes one or both of the

inputs has an unbounded domain. " om (3) we see that due
to noise the magnitude of the obs, r :ed signal can take on

any value from [0 oc], as can the i dividual in-phase and

quadrature components of the obser xed signal. This makes
the task of partitioning the input sp. ce with MFs and train-

ing the ANFIS difficult.

As a first approach to skirt this p: :_blem of unlimited in-

put domain size, we perform a rectangu[ar to polar transfor-
mation on the observed signal.but h, re use only the phase

of the observed signal. We justfly t us in two ways: first
the observation from Viterbi and Vite bi [19] that fixing the

magnitude of the received signal to :onstant value gave

good performance, and secondly redt: _:lg the input dimen-
sion to one greatly reduces the numi ._r of fuzzy rules re-

quired to model the input. Moreover _v transforming the

observed signal into phase angles we 1i -._t the input domain

to the interval [-Tr 7r). By limiting the : lput domain we are
able to partition the input space by the g; iJ partition method

and adequately cover the input space with a finite number of

MFs. Other approachs under investigati_ n by the author in-

clude use of CART to partition the input _Dace and training
the ANFIS at low SNRs with a limiter t_ restrict the range

of the observations. Both methods shows g romlse.

The ANFIS system is trained with the phase of the ob-

served signal and the target signal previously described for

the explicit estimation scheme. Figure 8 shows the block

diagram of the configuration used in training the closed-

loop ANFIS. Having trained the ANFIS to model the phase

error detectors for M-PSK we use the ANFIS phase error

detectors in a second order, type II PLL [4] to estimate

phase for M-PSK as shown in Figure 9 with loop param-

eters _"= 0.85, s_ = 0.19_.

Figure 8. Closed-loop ANFIS training config-
uration

Figure 9. ANFIS M-PSK phase error tracking

system

The purpose of the phase detector is to generate an output

to function as a measure of the phase error [13]. A key too[

to investigating phase acquisition and tracking is the aver-

age phase detector output commonly called the PD charac-
teristic 3 This is the expected value of the error signal e(k).

conditioned on a fixed value of the phase error o, -= O - o.
i.e.,

s(o_) - E [e(k)IO_] (s>

From simulation S(O_) is obtained by opening the loop

and measuring the average of the phase error signal. In

Figure 10, we present the PD characteristics for 2-,4-,8.
and 16-PSK obtained from the ANFIS based PD ,,,,hen the

SNR=20dB. One detector cycle is plotted for each M, v,,ith

the average detector output taken as the average of 1000 ob-
servations.

iThe PI) characteristic [13.4] is also knov, n as the S-cur,,e [12]
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Figure 10. ANFIS PD characteristics for 2-,4-
,8, and 16-PSK at SNR=20 dB

[6 PSK was also evaluated and foun . to be identical to t= _t

of the corresponding Approximate k, L estimators.

21=

Having presented the resulting phase detector character-

istics of the ANFIS M-PSK phase error detector we evaluate

the variance of the error of ANFIS based, closed loop phase

estimator. Recall that the variance is a measure power de-
fined as

= - (9)

The variance of the estimation error provides an impor-

tant measure of the estimator performance. We simulate

the implicit (closed loop) ANFIS estimation scheme with

Matlab ® using the ANFIS derived phase error detector.

To determine the "optimal" number of membership func-

tions required to achieve the minimum variance simulations

where performed varying the number of MFs from 2 to 80.

We plot results of these studies in Figure 11, where we see

that "optimal" performance is achieved with about 20 MFs.

Little or no gain is achieved by using greater than 20 MFs,

as can be seen from Figure 11.

Figure 11.8-PSK Estimator Variance at 10 dB

verse Number of Membership Functions

To evaluate estimator performance we simulate the PLL

described by the single set of loop design parameters given
earlier in this section and with appropriate PDs (ANTIS and
Approximate ML).

The variance data is presented for 8-PSK in Figure 12.

The variance is estimated at each SNR as the average of

1000 observations of the steady state variance. Although
not presented here, the estimator performance for 2,4 and

Figure 12. 8-PSK variance: ANFIS and High-

SNR approximate ML Lool:,

We see that using only angle information to designing
phase error detectors for M-PSK using the ANFIS model

free approach, results in perform ance equivalent to that of

the approximate ML solution. It is believed improved per-

formance can be achieved by t le ANFIS solution when

the complete complex signal car be processed. This leads

back to the explosion-of-rules th, t we have discussed previ-

ously as well as methods for rest icting or limiting the range

of noisy observations, while nc : reducing the information
about phase contained in those _ bservations.

7. Conclusions

We first described applicati )n of ANTIS to the general

case of explicit (open-loop or :'eed-forward) phase estima-

tion for blocks of N, M-PSK symbols. We saw that the

"ideal" ANFIS phase estimati( n system is currently not im-

plementable due to the explos on of rules. It may be possi-

ble to estimate the phase ofa [ lock of N symbols accurately

if all N symbols could be pre ,ented to the ANFIS in paral-
lel, an "adequate" number o MFs could be used on each

input and the ANFIS trained But at present the explosion

of rules severely limits the r umber of inputs if many MFs

are required. Use of effici_ nt input partitioning schemes
such as CART [1] show prol Use in this area.

We then engaged ANFIS in identification of a novel im-

plicit (closed-loop or error ' racking) estimator of phase for
continuous transmission or lt_:ge blocks of M-PSK modu-

lation using no a-priori knt a edge of the signal or estima-

tor structure. We discusse_ t:_e results and performance of
this new estimation schem :. We found that using only an-

gle information in training phase error detectors for M-PSK

using the ANFIS model ree approach, results in perfor-

mance equivalent to that )f the approximate NIL solution.

The ANFIS techniques s _ccessfully applied to the design
of M-PSK PDs is direct], applicable to more general and

complex Quadrature Am: litude Modulation PD design.



In the application of ANFIS to phase e_,timation the

problem of structure _dentification remains a critical issue.

It is believed improved performance can be achieved by the

ANF1S solution when the complete complex signal can be

processed. This leads back to the explosion-of-rules that we

have discussed previously as well as methods for restricting

or limiting the range of noisy observations, while not reduc-

ing the information about phase contained in those obser-

vations. As improved methods for structure identification

are developed and applied to ANFIS, the explosion-of-rules

problem can be overcome and improved ANFIS estimator

performance and expanded applications are expected.

While the focus of this research was been on the applica-

tion of soft computing to improve the performance of coher-

ent communications phase estimation, soft computing tech-

niques offer an alternative to current hard computing tech-

niques in all areas of communications parameter estimation

and synchronization.
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